|
sửa đổi
|
MẤy bạn giải giúp mình bài toán hình 8 này với
|
|
|
MẤy bạn giải giúp mình bài toán hình 8 này với Cho tam giác ABC nhọn với 3 đường cao AG, BD, CE đồng qui tại H. Gọi I là giao điểm của DE và HA. CMR IA/IH=GA/GH
MẤy bạn giải giúp mình bài toán hình 8 này với Cho tam giác ABC nhọn với 3 đường cao AG, BD, CE đồng qui tại H. Gọi I là giao điểm của DE và HA. CMR $IA/IH=GA/GH $
|
|
|
sửa đổi
|
Gấp
|
|
|
Gấp Cho nửa đường tròn đường kính BC. Gọi D là đi ểm cố định thuộc đoạn OC (D khác O và C). Dựng đường thẳng d vuông góc BC tại điểm D cắt nửa đường tròn O tại điểm A. Trên cung AC lấy điểm M bất kỳ( M khác A và C), tia BM, CM cắt d lần lượt tại K và E. Đường thẳng BE cắt nửa đường tròn tại N ( N khác B). 1, C/m; Tứ giác CDNE nội tiếp2, C/m: C,K,N thẳng hàng3, Gọi I là tâm đường tròn ngoại tiếp tam giác BKE. C/ m: Điểm I luôn nằm trên một đường thẳng cố định khi M thay đổi
Gấp Cho nửa đường tròn đường kính BC. Gọi D là đi ểm cố định thuộc đoạn OC (D khác O và C). Dựng đường thẳng d vuông góc BC tại điểm D cắt nửa đường tròn O tại điểm A. Trên cung AC lấy điểm M bất kỳ( M khác A và C), tia BM, CM cắt d lần lượt tại K và E. Đường thẳng BE cắt nửa đường tròn tại N ( N khác B). 1, C/m; Tứ giác CDNE nội tiếp2, C/m: C,K,N thẳng hàng3, Gọi I là tâm đường tròn ngoại tiếp tam giác BKE. C/ M: Điểm I luôn nằm trên một đường thẳng cố định khi M thay đổi
|
|
|
sửa đổi
|
giúp mình bài này với !
|
|
|
giúp mình bài này với ! cho: a/b=c/d CMR: a^2005/c^2005=a^1999.b^6+a^1996.b^9/c^1999.d^6+c^1996.d^9
giúp mình bài này với ! cho: $a/b=c/d $ CMR: $a^ {2005 }/c^ {2005 }=a^ {1999 }.b^ {6 }+ (a^ {1996 }.b^ {9 })/ (c^ {1999 }.d^ {6 })+c^ {1996 }.d^ {9 }$
|
|
|
sửa đổi
|
giải phương trình
|
|
|
1) .........$\Leftrightarrow 5\sqrt{x^{3}+1}=2(x^{2}+2)\Leftrightarrow 25(x^{3}+1)=4(x^{2}+2)^{2}$$\Leftrightarrow 4x^{4}-25x^{3}+16x^{2}-9=0$$\Leftrightarrow (x^{2}-5x-3)(4x^{2}-5x+3)=0$Giải ra ta được x
1)ĐK: $x\geq -1$ .........$\Leftrightarrow 5\sqrt{x^{3}+1}=2(x^{2}+2)\Leftrightarrow 25(x^{3}+1)=4(x^{2}+2)^{2}$$\Leftrightarrow 4x^{4}-25x^{3}+16x^{2}-9=0$$\Leftrightarrow (x^{2}-5x-3)(4x^{2}-5x+3)=0$Giải ra ta được x
|
|
|
sửa đổi
|
giải phương trình
|
|
|
1) .........$\Leftrightarrow 5\sqrt{x^{3}+1}=2(x^{2}+2)\Leftrightarrow 25(x^{3}+1)=4(x^{2}+2)^{2}$$\Leftrightarrow 4x^{4}-25x^{3}+16x^{2}-9=0$Giải ra ta được x
1) .........$\Leftrightarrow 5\sqrt{x^{3}+1}=2(x^{2}+2)\Leftrightarrow 25(x^{3}+1)=4(x^{2}+2)^{2}$$\Leftrightarrow 4x^{4}-25x^{3}+16x^{2}-9=0$$\Leftrightarrow (x^{2}-5x-3)(4x^{2}-5x+3)=0$Giải ra ta được x
|
|
|
sửa đổi
|
giới hạn hàm số cần người giải đáp
|
|
|
giới hạn hàm số cần người giải đáp \mathop {\lim }\limits_{x \to -\infty } \sqrt{x}4x^{2}-2x+3 +2x-1
giới hạn hàm số cần người giải đáp $\mathop {\lim }\limits_{x \to -\infty } \sqrt{x}4x^{2}-2x+3 +2x-1 $
|
|
|
sửa đổi
|
Câu hỏi hay
|
|
|
Câu hỏi hay Trong 1 bàn cờ tướng, 1 con tốt đi được nhiều nhất bao nhiêu nước.(xét trong điều kiện lý tưởng; mọi con tránh đường cho tốt đi)
Câu hỏi hay Trong 1 bàn cờ tướng, 1 con tốt đi được nhiều nhất bao nhiêu nước.(xét trong điều kiện lý tưởng; mọi con tránh đường cho tốt đi) . (Đi rồi ko đc đi lại)
|
|
|
sửa đổi
|
toan 7
|
|
|
toan 7 Tìm các số tự nhiên ab sao cho:(2016 *a+3 *b+1) *(2016^a+2016 *a+b)=225
toan 7 Tìm các số tự nhiên ab sao cho: $(2016 .a+3 .b+1) .(2016^a+2016 .a+b)=225 $
|
|
|
sửa đổi
|
số học lớp 9
|
|
|
số học lớp 9 chứng minh rằng:(n+1)(n+2)(n+3)(n+4) -25 là số chính phương....
số học lớp 9 chứng minh rằng:(n+1)(n+2)(n+3)(n+4) +1 là số chính phương....
|
|
|
sửa đổi
|
hiển nhiên.....!?
|
|
|
Đặt x=0.(9) = 0.999... (Số thập phân vô hạn tuần hoàn với chu kì 9).Ta có:10x = 9.(9)Lấy 10x-x:10x - x = 9.(9) - 0.(9)Điều này có nghĩa là9x = 9hayx = 1Vậy0.(9) = 1
Đặt $x=0, (9) = 0, 999...$ (Số thập phân vô hạn tuần hoàn với chu kì 9).Ta có:$10x = 9,9$Lấy $10x-x$:$10x - x = 9,(9) - 0,(9)$Điều này có nghĩa là$9x = 9$hay$x = 1$Vậy$0,(9) = 1$
|
|
|
sửa đổi
|
hiển nhiên.....!?
|
|
|
Ta có: 1/3=0. 333...=0.(3)Suy ra 3x1/3=3x0.333...hay 1=0.999...= 0.(9)
Ta có: $\frac{1}{3}=0, 333...=0,(3)$Suy ra $3.\frac{1}{3}=3.0,333...$hay $1=0,999...= 0,(9)$
|
|
|
sửa đổi
|
BĐT
|
|
|
BĐT $(ay+az+bz+bx+cx+cy)^{2}\geq 4(ab+bc+ca)(xy+yz+xz)$ với $\forall a;b;c;x;y;z$
BĐT $(ay+az+bz+bx+cx+cy)^{2}\geq 4(ab+bc+ca)(xy+yz+xz)$ với $\forall a;b;c;x;y;z$ (càng nhiều cách càng tốt nha)
|
|
|
sửa đổi
|
Giải hộ với
|
|
|
Giải hộ với (\sqrt{x} +6)\sqrt{x(2x^{2}+26x+8) } -4 \geq x(2x+3\sqrt{x} +33)
Giải hộ với $(\sqrt{x} +6)\sqrt{x(2x^{2}+26x+8) } -4 \geq x(2x+3\sqrt{x} +33) $
|
|
|
sửa đổi
|
A
|
|
|
A cho 2 so thuc x,y thoa man x^2+y^2-6x-2y+5=0. tim GTLN cua bieu thuc :P=\frac{3y^2+4xy+7x+4y-1}{x+2y+1}
A cho 2 so thuc x,y thoa man $x^2+y^2-6x-2y+5=0 $. tim GTLN cua bieu thuc : $P=\frac{3y^2+4xy+7x+4y-1}{x+2y+1} $
|
|
|
sửa đổi
|
Toán lớp 10
|
|
|
Toán lớp 10 Trong tam giác ABC chứng minh a, cos(A+B)=cosCb $sin \frac{A+B+C}{2}=cosC$c, SinC=Sin .cosB+sinBcosAd, tanA+tanB+tanC=tanA.tanB.tanC
Toán lớp 10 Trong tam giác ABC chứng minh a, cos(A+B)=cosCb $sin \frac{A+B+C}{2}=cosC$c, SinC=Sin A .cosB+sinBcosAd, tanA+tanB+tanC=tanA.tanB.tanC
|
|