Ta có:
$\sum\sqrt[3]{a+7}\le 3\sqrt[3]{\frac{a+b+c}{3}+7}=3\sqrt[3]{\frac{a+b+c}{3}\left(\frac{ab^2+bc^2+ca^2}{3}\right)^{\frac{11}{3}}+7\left(\frac{ab^2+bc^2+ca^2}{3}\right)^4}$
Ta cứn chứng minh:
$\frac{a+b+c}{3}\left(\frac{ab^2+bc^2+ca^2}{3}\right)^{\frac{11}{3}}+7\left(\frac{ab^2+bc^2+ca^2}{3}\right)^4\le 8(\frac{a^4+b^4+c^4}{3})^3$
Thật vậy:
$\frac{a^4+b^4+c^4}{3}\ge\left(\frac{a^3+b^3+c^3}{3}\right)^{\frac{4}{3}}\ge\left(\frac{ab^2+bc^2+ca^2}{3}\right)^{\frac{4}{3}}$
và:
$\frac{a^4+b^4+c^4}{a+b+c}\ge\frac{a^3+b^3+c^3}{3}\ge\frac{ab^2+bc^2+ca^2}{3}$
Điều phải chứng minh .