|
$1/$ Hàm số xác định trên đoạn $\left[ {\frac{1}{2},\,4} \right]$ Ta có $f(x) = \left\{ \begin{array}{l} {y_1} = - {x^2} - 2x + 3 + \frac{3}{2}\ln x\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\frac{1}{2} \le x \le 1\\ {y_2} = {x^2} + 2x - 3 + \frac{3}{2}\ln x\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1 \le x \le 4 \end{array} \right.$ * Với $\frac{1}{2} \le x \le 1:\,\,\,\,\,\,\,{f' }\left( x \right) = {y_1}' = - 2x - 2 + \frac{3}{{2x}}$ ${f' }\left( x \right) = \frac{{\left( { - 2x + 1} \right)\left( {2x + 3} \right)}}{{2x}} < 0\,\,\,\,\,\,\,\,\,\,\forall x \in \left[ {\frac{1}{2},1} \right]$ * Với $1 \le x \le 4:\,\,\,\,\,\,{f'}\left( x \right) = {y_2}' = 2x + 2 + \frac{3}{{2x}} > 0\,\,\,\,\forall x \in \left[ {1,4} \right]$ Ta có $f\left( {\frac{1}{2}} \right) = \frac{7}{4} - \frac{3}{2}\ln 2$ $\begin{array}{l} f(1)\,\,\,\,\, = 0\\ f(4)\,\,\,\, = 21 + 3\ln 2 \end{array}$ Suy ra : $\mathop {Maxf(x)}\limits_{\frac{1}{2} \le x \le 4} =f(4)= 21 + 3\ln 2$ $\mathop {\min f(x)}\limits_{\frac{1}{2} \le x \le 4} =f(1)= 0$ $2)$ Hàm số xác định trên đoạn $[\frac12;2]$ Ta có: $f(x)=\left\{ \begin{array}{l} -x^2-x+2+\ln x khi \frac 1 2 \leq x\le 1 \\ x^2+x-2+\ln x khi 1\le x\le 2 \end{array} \right.$ Với $\frac 1 2\le x\le 1$ ta có: $f'(x)=-2x-1+\frac 1 x\le 0 \forall x\in[\frac 1 2;1]$ Với $1\le x\le 2$ ta có: $f'(x)=2x+1+\frac 1 x>0 \forall x\in[1;2]$ Ta có: $f(\frac 1 2)=\frac 5 4 +\ln (\frac 1 2); f(1)=0; f(2)=4+\ln 2$ Vậy: $\mathop {Maxf(x)}\limits_{\frac{1}{2} \le x \le 2} = f(2)=4 + \ln 2$ $\mathop {minf(x)}\limits_{\frac{1}{2} \le x \le 2} =f(1)= 0$
|
|
Đăng bài 27-04-12 08:43 AM
|
|