Cho $\begin{cases}a_{1},a_{2},...,a_{n}\geq 0 \\ a_{1}+a_{2}+...+a_{n}=1 \\ n \in Z,n\geq 2\end{cases}$ Chứng minh rằng: $\left ( 1+\frac{1}{a_{1}} \right )\left ( 1+\frac{1}{a_{2}} \right )...\left ( 1+\frac{1}{a_{n}} \right )\geq \left ( n+1 \right )^{n}$
|