Cho $n,p \in Z,n,p \geq 2,a_{ij} >0, \forall i,j \in Z$ $(1 \leq i \leq n, 1 \leq j \leq p)$ Chứng minh rằng: $\sqrt[n]{(a_{11}+a_{12}+...+a_{1p})(a_{21}+a_{22}+...+a_{2p})...(a_{n1}+a_{n2}+...+a_{np})}$ $\geq \sqrt[n]{a_{11}+a_{21}+...+a_{n1}}+\sqrt[n]{a_{12}+a_{22}+...+a_{n2}}+...+\sqrt[n]{a_{1p}+a_{2p}+...+a_{np}}$
|