Đăng bài 12-05-12 10:13 AM
|
Đăng bài 11-05-12 01:35 PM
|
Đăng bài 11-05-12 01:32 PM
|
Đăng bài 11-05-12 10:55 AM
|
Đăng bài 10-05-12 11:54 AM
|
Đăng bài 09-05-12 08:21 AM
|
Giải và biện luận theo $a$ hệ sau : $\left\{ \begin{array}{l} 2cos\,x + sin\,x = 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\ {\log _z}\sin y = {\log _z}a.{\log _a}\left( {2 - 3cos\,x} \right)\,\,\,\,\,\,\,(2)\\ {\log _a}z + {\log _a}\left( {\frac{1}{{2a}} - 1} \right) = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(3) \end{array} \right.$
Đăng bài 08-05-12 04:39 PM
|
Cho hệ phương trình : $\left\{ \begin{array}{l} 9{x^2} - 4{y^2} = 5\\ {\log _m}\left( {3x + 2y} \right) - {\log _3}\left( {3x - 2y} \right) = 1 \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)$ $1)$ Giải ($1$) khi $m = 5$ $2)$ Tìm giá trị lớn nhất của tham số $m$ sao cho hệ ($1$) có nghiệm $\left( {x,\,y} \right)$ thỏa mãn : $3x + 2y \le 5$
Đăng bài 08-05-12 04:19 PM
|
Giải các hệ : $\begin{array}{l} 1)\,\,\,\left\{ \begin{array}{l} {\log _{2 - x}}\left( {2 - y} \right) > 0\\ {\log _{4 - y}}\left( {2x - 2} \right) > 0 \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,3)\,\,\left\{ \begin{array}{l} {\log _{x - 2}}\left( {2y - 4} \right) > 0\\ {\log _{3 - y}}\left( {x - 4} \right) > 0 \end{array} \right.\\ 2)\,\,\,\left\{ \begin{array}{l} {\log _{x - 1}}\left( {5 - y} \right) < 0\\ {\log _{2 - y}}\left( {4 - x} \right) < 0 \end{array} \right. \end{array}$
Đăng bài 08-05-12 03:57 PM
|
Giải các hệ : $\begin{array}{l} 1)\,\,\,\,\left\{ \begin{array}{l} {2^{{{\log }_{\frac{1}{2}}}\left( {x + y} \right)}} = {5^{{{\log }_5}\left( {x - y} \right)}}\\ {\log _2}x + {\log _2}y = \frac{1}{2} \end{array} \right.\\ 2)\,\,\,\left\{ \begin{array}{l} {\log _2}xy.{\log _2}\frac{x}{y} = - 3\\ \log _2^2x + \log _2^2y = 5 \end{array} \right.\\ 3)\,\,\,\left\{ \begin{array}{l} {x^2} = 1 + 6{\log _4}x\\ {y^2} = {2^x}.y + {2^{2x + 1}} \end{array} \right.\\ 4)\,\,\,\left\{ \begin{array}{l} {\log _2}x + {\log _4}y + {\log _4}z = 2\\ {\log _3}y + {\log _9}z + {\log _9}x = 2\\ {\log _4}z + {\log _{16}}x + {\log _{16}}y = 2 \end{array} \right. \end{array}$
Đăng bài 08-05-12 03:46 PM
|
Giải các hệ : $\begin{array}{l} 1)\,\,\,\left\{ \begin{array}{l} {y^{1 - \frac{2}{5}{{\log }_x}y}} = {x^{\frac{2}{5}}}\\ 1 + {\log _x}\left( {1 - \frac{{3y}}{x}} \right) = {\log _x}4 \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\ 2)\,\,\,\left\{ \begin{array}{l} y.{x^{{{\log }_y}x}} = {x^{\frac{5}{2}}}\\ {\log _4}y.{\log _y}\left( {y - 3x} \right) = 1 \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2) \end{array}$
Đăng bài 08-05-12 03:43 PM
|
Giải các hệ : $\begin{array}{l} 1)\,\,\,\left\{ \begin{array}{l} \left( {1 + 2{{\log }_{\left| {xy} \right|}}2} \right).{\log _{x + y}}\left| {xy} \right| = 1\,\,\,\,(1)\\ x - y = 2\sqrt {3\,} \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2) \end{array} \right.\\ 2)\,\,\,\left\{ \begin{array}{l} {\log _{\left| {xy} \right|}}\left( {x - y} \right) = 1\\ 2{\log _5}\left| {xy} \right|.{\log _{\left| {xy} \right|}}\left( {x + y} \right) = 1 \end{array} \right. \end{array}$
Đăng bài 08-05-12 03:41 PM
|
Đăng bài 08-05-12 03:39 PM
|
Đăng bài 08-05-12 03:37 PM
|
Giải các hệ : $\begin{array}{l} 1)\,\,\,\left\{ \begin{array}{l} x + {2^{y + 1}} = 3\\ 4x + {4^y} = 32 \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,3)\,\,\,\left\{ \begin{array}{l} x + {3^{y - 1}} = 2\\ 3x + {9^y} = 18 \end{array} \right.\\ 2)\,\,\left\{ \begin{array}{l} \sqrt y + \log {x^2} = 2\\ y + 4\log x = 28 \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,4)\,\,\,\left\{ \begin{array}{l} \sqrt y + 2\log x = 3\\ y - 3\log {x^2} = 1 \end{array} \right. \end{array}$
Đăng bài 08-05-12 03:34 PM
|