Giải các hệ phương trình : $\begin{array}{l} 1)\,\,\,\left\{ \begin{array}{l} {x^{x + y}} = {y^{12}}\\ {y^{x + y}} = {x^3} \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(x,y > 0)\\ 2)\,\,\,\left\{ \begin{array}{l} {\log _2}\left( {x + y} \right) - {\log _3}\left( {x - y} \right) = 1\\ {x^2} - {y^2} = 1 \end{array} \right. \end{array}$
Đăng bài 08-05-12 03:28 PM
|
Giải các hệ phương trình : $\begin{array}{l} 1)\,\,\,\left\{ \begin{array}{l} {9^x}{.3^y} = 81\\ \lg {\left( {x +y } \right)^2} - \lg x = 2\lg 3 \end{array} \right.\,\,\,\,\,\,\,\,(1)\\ 2)\,\,\left\{ \begin{array}{l} {x^{\sqrt y + x}} = {y^{\frac{4}{3}}}\\ {y^{x + \sqrt y }} = {x^{\frac{4}{3}}} \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2) \end{array}$
Đăng bài 08-05-12 03:25 PM
|
Giải các hệ phương trình: $1)\,\,\left\{ \begin{array}{l} xy = 40\\ {x^{\lg y}} = 4 \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2)\,\,\left\{ \ \begin{array}{l} {\log _y}x + {\log _x}y = 2\\ {x^2} + y = 12 \end{array} \right.$
Đăng bài 08-05-12 03:22 PM
|
Giải các hệ phương trình : $\begin{array}{l} 1)\,\,\,\left\{ \begin{array}{l} {\log _{xy}}\left( {x - y} \right) = 1\\ {\log _{xy}}\left( {x + y} \right) = 0 \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,3)\,\,\,\left\{ \begin{array}{l} {\log _x}y = 2\\ {\log _{x + 1}}\left( {y + 23} \right) = 3 \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,(3)\\ 2)\,\,\left\{ \begin{array}{l} y = 1 + {\log _4}x\\ {x^y} = 4096 \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2) \end{array}$
Đăng bài 08-05-12 03:18 PM
|
Giải hệ phương trình : $\left\{ \begin{array}{l} {\log _x}\left( {3x + 2y} \right) = 2\\ {\log _y}\left( {2x + 3y} \right) = 2 \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)$
Đăng bài 08-05-12 03:16 PM
|
Giải các hệ : $1)\,\,\,\left\{ \begin{array}{l} {\log _2}xy = 5\\ {\log _{\frac{1}{2}}}\frac{x}{y} = 1 \end{array} \right.\,\,\,\,\,(1)\,\,\,\,\,\,\,\,\,\,\,\,2)\,\,\,\,\left\{ \begin{array}{l} xy = 64\\ {\log _x}y = 5 \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2)$
Đăng bài 08-05-12 03:14 PM
|
Giải các hệ phương trình : $\begin{array}{l} 1)\,\,\left\{ \begin{array}{l} {\log _2}\left( {{x^2} + {y^2}} \right) = 5\\ 2{\log _4}x + {\log _2}y = 4 \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,3)\,\,\,\left\{ \begin{array}{l} {3^{\lg x}} = {4^{\lg y}}\\ {\left( {4x} \right)^{\lg 4}} = {\left( {3y} \right)^{\lg 3}} \end{array} \right.\\ 2)\,\,\left\{ \begin{array}{l} {3^{{x^2} + {y^2}}} = 81\\ {\log _2}x + 2{\log _4}y = 1 \end{array} \right. \end{array}$
Đăng bài 08-05-12 03:12 PM
|
Giải các hệ : $\begin{array}{l} 1)\,\,\,\left\{ \begin{array}{l} {\log _4}x + {\log _4}y = 1 + {\log _4}9\\ x + y - 20 = 0 \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\ 2)\,\,\left\{ \begin{array}{l} {\log _x}y + {\log _y}x = 2\\ {x^2} - y = 20 \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2)\\ 3)\,\,\,\left\{ \begin{array}{l} {3^{ - x}}{.2^y} = 1152\\ {\log _{\sqrt 5 }}\left( {x + y} \right) = 2 \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(3) \end{array}$
Đăng bài 08-05-12 03:11 PM
|
Tìm $x, y$ đồng thời thỏa mãn các điều kiện : $\begin{array}{l} x + y = 2\sqrt 3 \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\ {\log _3}\left( {x.y} \right) = 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2) \end{array}$
Đăng bài 08-05-12 03:06 PM
|
Giải các hệ : $1)\,\,\,\left\{ \begin{array}{l} \frac{1}{{2\sqrt 3 }} = {\left( {x + y} \right)^{\frac{1}{{x - y}}}}\\ \left( {x + y} \right){.2^{y - x}} = 48 \end{array} \right.\,\,\,\,\,\,\,\,2)\,\,\left\{ \begin{array}{l} {\left| x \right|^y} = 9\\ {\left( {324} \right)^{\frac{1}{y}}} = {2^2} \end{array} \right.$
Đăng bài 08-05-12 03:03 PM
|
Đăng bài 08-05-12 03:02 PM
|
Giải các hệ : $1)\,\left\{ \begin{array}{l} {3^x}{.2^y} = \frac{1}{9}\\ y - x = 2 \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2)\,\left\{ \begin{array}{l} {2^y} = {200.5^x}\\ x + y = 1 \end{array} \right.$
Đăng bài 08-05-12 03:00 PM
|
Giải các hệ phương trình : $\begin{array}{l} 1)\,\,\,\left\{ \begin{array}{l} {y^2} = {4^x} + 8\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\ {2^{x + 1}} + y + 1 = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2) \end{array} \right.\\ 2)\,\,\left\{ \begin{array}{l} {y^2} = {4^x} + 2\,\\ {2^{x + 1}} + 2y + 1 = 0 \end{array} \right. \end{array}$
Đăng bài 08-05-12 02:57 PM
|
Đăng bài 27-04-12 08:47 AM
|
Đăng bài 27-04-12 08:33 AM
|