|
a) Ta có: $\frac{x}{x^2+1}<\frac{x}{2x}=\frac{1}{2},\forall x\in(1,2)$ $\frac{x}{x^2+1}-\frac{2}{5}=\frac{-2x^2+5x-2}{5(x^2+1)}=\frac{(2x-1)(2-x)}{5(x^2+1)}>0, \forall x\in(1,2)$ Suy ra: $\int\limits_{1}^{2}\frac{2}{5}dx<\int\limits_{1}^{2}\frac{xdx}{x^2+1}<\int\limits_{1}^{2}\frac{1}{2}dx$ $\Leftrightarrow \frac{2}{5} < \int\limits_{1}^{2} \frac{xdx}{x^2+1} < \frac{1}{2} $
|