|
$1)$ Đặt $t = \sqrt {{e^x} + 1} \,\,\, \Rightarrow \,\,\,{t^2} = {e^x} + 1\,\,\, \Rightarrow \,\,\,2tdt\, = {e^x}dx$ $ \Rightarrow \,\,\,dx = \frac{{2tdt}}{{{t^2} - 1}}\,\,\,;\,\,\,$$\begin{array}{l} x = 0\,\,\, \Rightarrow \,\,t = \sqrt 2 \\ x = \ln 3\,\, \Rightarrow \,\,\,t = 2 \end{array}$ $\begin{array}{l} I = 2\int\limits_{\sqrt 2 }^2 {\frac{{dt}}{{{t^2} - 1}}} = \left[ {\ln \left| {\frac{{t - 1}}{{t + 1}}} \right|} \right]_{\sqrt 2 }^2 = \ln \frac{1}{3} - \ln \frac{{\sqrt 2 - 1}}{{\sqrt 2 + 1}}\\ I = \ln \frac{{\sqrt 2 + 1}}{{3\left( {\sqrt 2 - 1} \right)}} = \ln \frac{{3 + 2\sqrt 2 }}{3} \end{array}$ $2)$ Đặt $u = x\,\,\,\, \Rightarrow \,\,\,du = dx$ $dv = {e^{ - \frac{x}{2}}}dx\,\,\,\, \Rightarrow \,\,v = - 2{e^{ - \frac{x}{2}}}$ $\begin{array}{l} J = - \left. {2x{e^{ - \frac{x}{2}}}} \right]_0^2 + 2\int\limits_0^2 {{e^{ - \frac{x}{2}}}} \\ \left. {\,\,\,\, = \, - 4{e^{ - 1}} - 4{e^{ - \frac{x}{2}}}} \right]_0^2 = \,\, - 4{e^{ - 1}} - 4\left( {{e^{ - 1}} - 1} \right) = 4 - \frac{8}{e} \end{array}$ Vậy $J = 4 - \frac{8}{e}$
|
|
Đăng bài 09-05-12 09:10 AM
|
|