|
$\begin{array}{l} 1)\,\,\,I = \,\,\int\limits_0^{\frac{1}{2}} {\frac{{{x^4}}}{{{x^2} - 1}}dx = } \int\limits_0^{\frac{1}{2}} {\left( {{x^2} + 1 + \frac{1}{{{x^2} - 1}}} \right)} dx\\ \,\,\,\,\,\,\,\,\, = \,\,\,\left[ {\frac{{{x^3}}}{3} + x + \frac{1}{2}\ln \left( {\frac{{x - 1}}{{x + 1}}} \right)} \right]_0^{\frac{1}{2}} = \frac{{13}}{{24}} - \frac{1}{2}\ln 3 \end{array}$ $2)\,\,\,\,I = \int\limits_0^t {\frac{{t{g^4}x\left( {1 + t{g^2}x} \right)}}{{1 - t{g^2}x}}dx\,\,\, = \,\,\int\limits_0^t {\frac{{t{g^4}xd\left( {tgx} \right)}}{{1 - t{g^2}x}}} } $ Đặt $u = tgx\,\,\,\,\, \Rightarrow \,\,\,\,du = d\left( {tgx} \right)\,\,,\,\,\left\{ \begin{array}{l} x = 0\,\,\, \Rightarrow \,\,u = 0\\ x = t\,\,\, \Rightarrow \,\,u = tgt \end{array} \right.$ Suy ra: $I = \,\, - \int\limits_0^{tgt} {\frac{{{u^4}}}{{{u^2} - 1}}} du$ $\begin{array}{l} = \left[ {\frac{{{u^3}}}{3} + u + \frac{1}{2}\ln \left| {\frac{{u - 1}}{{u + 1}}} \right|} \right]_0^{tgt}\\ = \frac{1}{2}\ln \left| {tg\left( {t + \frac{\pi }{4}} \right)} \right| - \frac{{t{g^3}t}}{3} - tgt \end{array}$ $\begin{array}{l} \forall t \in \left( {0,\frac{\pi }{4}} \right)\,\,\,:\,\,\,\frac{{t{g^4}x}}{{co\,s\,2x}} > 0\,\,\,\,\, \Rightarrow \,\,\,{I_{(t)}} > 0\\ \Rightarrow \,\,\,\frac{1}{2}\ln \left| {tg\left( {t + \frac{\pi }{4}} \right)} \right| > \frac{{t{g^3}t}}{3} - tgt\\ \Rightarrow \,\,\ln \left[ {tg\left( {t + \frac{\pi }{4}} \right)} \right] > \frac{2}{3}\left( {t{g^3}t + 3tgt} \right)\\ \Rightarrow \,\,tg\left( {t + \frac{\pi }{4}} \right) > {e^{\frac{2}{3}\left( {t{g^3}t + 3tgt} \right)}} \end{array}$
|
|
Đăng bài 09-05-12 09:19 AM
|
|